Pathway Map Details

NAD metabolism



view in full size
| open in MetaCore

Object list (links open in MetaCore):

Sirtuin3, 1.6.2.2, 2.7.1.23, Sirtuin6, Sirtuin2, NRK1, AOX1, Sirtuin4, CD38, IAP, 3.1.3.5, 1.6.1.2, Nicotinamide, PARP-1, 1.13.11.6, 3.1.3.5, 3.7.1.3, Sirtuin5, Sirtuin7, PLAP-like, ALPL, TDO2, 3.1.3.1, 2.4.2.1, 2.7.1.-, 3.2.2.5, Tankyrase 2, 1.13.11.11, NADPH, 2.7.7.1, 3.5.1.9, 3.6.1.22/3.6.1.9, KMO, PARP-3, PPNK, arylformamidase, VPARP, NNTM, ENPP1, KYNU, Nicotinamide, ENPP3, NADH, NAR5, NT5C3, 2.4.2.1, ENPP2, NAR3, 1.14.13.9, N1-Methyl-2-pyridone-5-carboxamide, NAD synthetase 1, N-Methyl nicotinamide, 3.2.2.5, NMNA3, 3HAO, NaMN, 2'-Phospho- ADP ribose, 3.2.2.5, NAR1, NAR4, Nicotinamide N-oxide, NAD('+), N('1)-Methyl-4- pyridone-3- carboxamide, NADC, NT5M, ADP-(D)-ribose, cADP-ribose, NT5C, 1.13.11.42, 2'-Phospho- cADPribose, 3.2.2.5, 2.4.2.19, 1.14.14.1, spontaneous, 1.2.3.1, PARP-2, NMNA2, 2.1.1.1, 1.2.3.1, NADP('+), Nicotinamide ribonucleoside, NMNA1, 2-Amino-3-carboxy muconate semialdehyde, 6.3.5.1, 3-Hydroxy- (L)- kynurenine, ALPP, 2.4.2.12, 3.1.3.1, 3-Hydroxy- anthranilate, Deamido-NAD(P)('+), Deamido-NAD('+), L-Kynurenine, MIBP, N-Formyl- (L)-kynurenine, NUD12, 2.4.2.31, L-Tryptophan, 2.4.2.30, 3.5.1.-, Nicotinate D-ribonucleoside, 3.1.3.1, INDO, NNMT, Quinolinate, CYB5R3, BST1, 3.2.2.5, 3.2.2.5, PBEF, 5'-NTC, 5'-NT1B, 2.7.7.1, CYP2D6, Nicotinate, 5'-NT1A, 3.6.1.22/ 3.6.1.9, PNPH, NMN, 5'-NTD, Sirtuin1, Tankyrase 1

Description:

NAD metabolism.

Nicotinamide adenine dinucleotide ( NAD + ) and its phosphorylated and reduced forms, NADP +, NADH and NADPH, have central roles in cellular metabolism and energy production as hydride-accepting and hydride-donating coenzymes.

Tryptophan is the de novo precursor of NAD + in all vertebrates and almost all eukaryotes investigated. De novo synthesis begins with the conversion of (L)-Tryptophan to N'-Formyl-(L)-kynurenine by either Tryptophan 2, 3-dioxygenase ( TDO2 ) [1], [2] or Indoleamine 2, 3-dioxygenase ( INDO ) [2], [3], [4], [5], [6], [7]. Probable arylformamidase ( Arylformamidase ) then forms (L)-Kynurenine [8], [9], [10], [11], which is used as substrate by Kynurenine 3-monooxygenase ( KMO ) [12], [13], [14], [15] to form 3-Hydroxy-(L)-kynurenine. Kynureninase ( Kynu ) then forms 3-Hydroxy-anthranilate [16], [17], [18], which is converted to 2-Amino-3-carboxymuconate semialdehyde by 3-Hydroxyanthranilate 3, 4-dioxygenase ( 3HAO ) [19], [20], [21], [22], [23]. The semialdehyde undergoes a spontaneous condensation and rearrangement to form Quinolate, which is converted to Nicotinic acid mononucleotide ( NaMN ) by Nicotinate-nucleotide pyrophosphorylase [carboxylating] ( NADC ) [24], [25].

NaMN then can transform in two ways, the first way with forming Nicotinate D-ribonucleoside by the action of the following enzymes: Cytosolic 5'-nucleotidase 1B ( 5'-NT1B ), Cytosolic purine 5'-nucleotidase ( 5'-NTC ), Cytosolic 5'-nucleotidase 3 ( NT5C3 ), 5'(3')-Deoxyribonucleotidase, cytosolic type (NT5C ), 5'(3')-Deoxyribonucleotidase, mitochondrial precursor ( NT5M ), Cytosolic 5'-nucleotidase 1A ( 5'-NT1A ), 5'-nucleotidase precursor ( 5'-NTD ) [26]. These enzymes also catalyze the reaction formation of Nicotinamide ribonucleoside from Nicotinamid-mononucleotide ( NMN ). This reaction can proceeds in the opposite direction, but it catalyzed by already other enzymes: Nicotinamide riboside kinase 2 ( MIBP ) and by Nicotinamide riboside kinase 1 ( NRK1 ) [27]. And the second way of transformation NaMN is forming Deamido-NAD (' +) by the action of following enzymes: Nicotinamide mononucleotide adenylyltransferase 3 ( NMNA3 ) [28], Nicotinamide mononucleotide adenylyltransferase 2 ( NMNA2 ) [29], Nicotinamide mononucleotide adenylyltransferase 1 ( NMNA1 ) [30], [31], [32], [28], [33]. These enzymes also participate in reaction formation of NAD + from NMN.

Purine nucleoside phosphorylase ( PNPH ) is an enzyme which catalyze the reaction formation Nicotinate from NMN [34], [35] and the reaction formation Nicotinamide from Nicotinamide ribonucleoside [36], [37], [38].

Nikotinate transforms into the Nicotinamide and Deamido-NAD(P) ('+) by the action of the following enzymes: ADP-ribosyl cyclase 2 precursor ( BST1 ) [39], [40] and by ADP-ribosyl cyclase 1 ( CD38 ). These enzymes also catalyze the five other reactions: 1- formation 2'-Phospho-cADPribose and Nicotinamide from NAD(P) ('+) [41], [42], [43] for CD38 (References on the literature remain the same for all reactions if others are not showed ), 2 - further conversation 2'-Phospho-cADPribose into the 2'-Phospho-ADPribose, 3-formation cADPribose and Nicotinamid e from NAD ('+) [44] for CD38, 4 - furher transformation cADPribose into the ADP-D-ribose [45], [46], [43], [47], [48], [49] for CD38. ADP-D-ribose and 2'-phospho-ADPribose participate in ATP metabolism. And the last reaction is formation NAD ('+) from Deamido-NAD ('+) and Nicotinamide. One more way NAD ('+) formation from Deamido-NAD ('+) exists by the action of Glutamine-dependent NAD (+) synthetase ( NAD synthetase 1 ) [50], [51], [52].

Deamido-NAD ('+) is obtained from Deamido-NAD(P) ('+) by the action of group of alkaline phosphatase: Alkaline phosphatase, placental type precursor ( ALPP ) [53], [54], [55], Intestinal alkaline phosphatase precursor ( IAP ) [53], [56], [54], [55], Alkaline phosphatase, tissue-nonspecific isozyme precursor ( ALPL ) [53], [54], [55], [57], Alkaline phosphatase, placental-like precursor ( PLAP-like ) [53], [54], [55]. These enzymes also catalyze formation NAD ('+) from NAD(P) ('+) and formation cADPribose from 2'-Phospho-cADPribose.

As we can see, Nicotinamide meets on a metabolic card a twice that speaks about importance of this compound in transformation NAD +. Nicotinamide can undergo transformation into the Nicotinamide N-oxide by the action of Cytochrome P450 2D6 ( CYP2D6 ) [58] and by consecutive reaction at first into the N-Methylnicotinamide in the presence of Nicotinamide N-methyltransferase ( NNMT ) [59], [60] and then by the action of Aldehyde oxidase ( AOX1 ) into the N('1)-Methyl-2-pyridone-5-carboxamide [61], [62], [62], [58], [63] or into the N('1)-Methyl-4-pyridone-3-carboxamide [64], [65]. Formation Nicotinamide from NAD + also catalyzed by NAD-dependent deacetylase sirtuin-1 ( Sirtuin1 ) [66], [67], [68], NAD-dependent deacetylase sirtuin-2 ( Sirtuin2 ) [69], [70], [71], NAD-dependent deacetylase sirtuin-3, mitochondrial precursor ( Sirtuin3 ) [72], [73], NAD-dependent deacetylase sirtuin-4 ( Sirtuin4 ) [74], [75], NAD-dependent deacetylase sirtuin-5 ( Sirtuin5 ) [74], NAD-dependent deacetylase sirtuin-7 ( Sirtuin7 ) [76], [77], [78]. Formation Nicotinamide from NAD + also proceeds in the presence of class of enzymes called pentosyltransferases: GPI-linked NAD(P)(+)--arginine ADP-ribosyltransferase 1 precursor ( NAR1 ) [79], Ecto-ADP-ribosyltransferase 3 precursor ( NAR3 ) [80], [81], Ecto-ADP-ribosyltransferase 4 precursor ( NAR4 ) [81], [82], Ecto-ADP-ribosyltransferase 5 precursor ( NAR5 ) [83], [84], [85], [86], Mono-ADP-ribosyltransferase sirtuin-6 ( Sirtuin6 ) [76], [87], [78], Poly [ADP-ribose] polymerase 1 ( PARP-1 ) [88], [89], Poly [ADP-ribose] polymerase 2 ( PARP-2 ) [90], [91], [92], Poly [ADP-ribose] polymerase 3 ( PARP-3 ) [90], Poly [ADP-ribose] polymerase 4 ( VPARP ) [93], [94], Tankyrase-1 [95], [96], [97], Tankyrase 2 [98], [97].

NAD ('+) can hydrolyze with forming NMN. This reaction catalyzed by different enzymes: Ectonucleotide pyrophosphatase/phosphodiesterase family member 1 ( ENPP1 ) [99], [100], [101], [102], Ectonucleotide pyrophosphatase/phosphodiesterase family member 2 precursor ( ENPP2 ) [103], [104], [105], Ectonucleotide pyrophosphatase/phosphodiesterase family member 3 ( ENPP3 ) [106], and by another enzyme -Peroxisomal NADH pyrophosphatase NUDT12 ( NUD12 ) [107]. These all enzymes also catalyze reaction formation NaMN from Deamido-NAD ('+).

NADP + can obtain from from NAD + by two ways. In the first case reaction catalyzed by NAD kinase ( PPNK ) [108]. In the second case NAD + react with NADPH with forming NADP+ and NADH is catalyzed by NAD(P) transhydrogenase, mitochondrial precursor ( NNTM ) [109], [110]. Then NADH can transform into the NAD + in the presence of NADH-cytochrome b5 reductase 3 ( CYB5R3 ) [111], [112], [113], [114].

References:

  1. Comings DE, Muhleman D, Dietz G, Sherman M, Forest GL
    Sequence of human tryptophan 2,3-dioxygenase (TDO2): presence of a glucocorticoid response-like element composed of a GTT repeat and an intronic CCCCT repeat. Genomics 1995 Sep 20;29(2):390-6
  2. Buczko W, Cylwik D, Stokowska W
    [Metabolism of tryptophan via the kynurenine pathway in saliva] Postepy higieny i medycyny doswiadczalnej (Online) 2005 Jun 16;59:283-9
  3. Pertovaara M, Raitala A, Uusitalo H, Pukander J, Helin H, Oja SS, Hurme M
    Mechanisms dependent on tryptophan catabolism regulate immune responses in primary Sjogren's syndrome. Clinical and experimental immunology 2005 Oct;142(1):155-61
  4. Le Rond S, Gonzalez A, Gonzalez AS, Carosella ED, Rouas-Freiss N
    Indoleamine 2,3 dioxygenase and human leucocyte antigen-G inhibit the T-cell alloproliferative response through two independent pathways. Immunology 2005 Nov;116(3):297-307
  5. Takikawa O
    Biochemical and medical aspects of the indoleamine 2,3-dioxygenase-initiated L-tryptophan metabolism. Biochemical and biophysical research communications 2005 Dec 9;338(1):12-9
  6. Sugimoto H, Oda S, Otsuki T, Hino T, Yoshida T, Shiro Y
    Crystal structure of human indoleamine 2,3-dioxygenase: catalytic mechanism of O2 incorporation by a heme-containing dioxygenase. Proceedings of the National Academy of Sciences of the United States of America 2006 Feb 21;103(8):2611-6
  7. Oda S, Sugimoto H, Yoshida T, Shiro Y
    Crystallization and preliminary crystallographic studies of human indoleamine 2,3-dioxygenase. Acta crystallographica. Section F, Structural biology and crystallization communications [electronic resource]. 2006 Mar 1;62(Pt 3):221-3
  8. Seifert J, Pewnim T
    Alteration of mice L-tryptophan metabolism by the organophosphorous acid triester diazinon. Biochemical pharmacology 1992 Dec 1;44(11):2243-50
  9. Pabarcus MK, Casida JE
    Kynurenine formamidase: determination of primary structure and modeling-based prediction of tertiary structure and catalytic triad. Biochimica et biophysica acta 2002 Apr 29;1596(2):201-11
  10. Dobrovolsky VN, Bowyer JF, Pabarcus MK, Heflich RH, Williams LD, Doerge DR, Arvidsson B, Bergquist J, Casida JE
    Effect of arylformamidase (kynurenine formamidase) gene inactivation in mice on enzymatic activity, kynurenine pathway metabolites and phenotype. Biochimica et biophysica acta 2005 Jun 20;1724(1-2):163-72
  11. Pabarcus MK, Casida JE
    Cloning, expression, and catalytic triad of recombinant arylformamidase. Protein expression and purification 2005 Nov;44(1):39-44
  12. Wiseman JS, Nichols JS
    A radiometric kynurenine monooxygenase assay. Analytical biochemistry 1990 Jan;184(1):55-8
  13. Xie D, Hui F, Homandberg GA
    Fibronectin fragments alter matrix protein synthesis in cartilage tissue cultured in vitro. Archives of biochemistry and biophysics 1993 Nov 15;307(1):110-8
  14. Alberati-Giani D, Cesura AM, Broger C, Warren WD, Rover S, Malherbe P
    Cloning and functional expression of human kynurenine 3-monooxygenase. FEBS letters 1997 Jun 30;410(2-3):407-12
  15. Breton J, Avanzi N, Magagnin S, Covini N, Magistrelli G, Cozzi L, Isacchi A
    Functional characterization and mechanism of action of recombinant human kynurenine 3-hydroxylase. European journal of biochemistry / FEBS 2000 Feb;267(4):1092-9
  16. Alberati-Giani D, Buchli R, Malherbe P, Broger C, Lang G, Kohler C, Lahm HW, Cesura AM
    Isolation and expression of a cDNA clone encoding human kynureninase. European journal of biochemistry / FEBS 1996 Jul 15;239(2):460-8
  17. Toma S, Nakamura M, Tone S, Okuno E, Kido R, Breton J, Avanzi N, Cozzi L, Speciale C, Mostardini M, Gatti S, Benatti L
    Cloning and recombinant expression of rat and human kynureninase. FEBS letters 1997 May 12;408(1):5-10
  18. Walsh HA, Botting NP
    Purification and biochemical characterization of some of the properties of recombinant human kynureninase. European journal of biochemistry / FEBS 2002 Apr;269(8):2069-74
  19. Schwarcz R, Okuno E, White RJ, Bird ED, Whetsell WO Jr
    3-Hydroxyanthranilate oxygenase activity is increased in the brains of Huntington disease victims. Proceedings of the National Academy of Sciences of the United States of America 1988 Jun;85(11):4079-81
  20. Todd WP, Carpenter BK, Schwarcz R
    Preparation of 4-halo-3-hydroxyanthranilates and demonstration of their inhibition of 3-hydroxyanthranilate oxygenase activity in rat and human brain tissue. Preparative biochemistry. 1989;19(2):155-65
  21. Malherbe P, Kohler C, Da Prada M, Lang G, Kiefer V, Schwarcz R, Lahm HW, Cesura AM
    Molecular cloning and functional expression of human 3-hydroxyanthranilic-acid dioxygenase. The Journal of biological chemistry 1994 May 13;269(19):13792-7
  22. Grant RS, Naif H, Thuruthyil SJ, Nasr N, Littlejohn T, Takikawa O, Kapoor V
    Induction of indolamine 2,3-dioxygenase in primary human macrophages by human immunodeficiency virus type 1 is strain dependent. Journal of virology 2000 May;74(9):4110-5
  23. Calderone V, Trabucco M, Menin V, Negro A, Zanotti G
    Cloning of human 3-hydroxyanthranilic acid dioxygenase in Escherichia coli: characterisation of the purified enzyme and its in vitro inhibition by Zn2+. Biochimica et biophysica acta 2002 Apr 29;1596(2):283-92
  24. Fukuoka SI, Nyaruhucha CM, Shibata K
    Characterization and functional expression of the cDNA encoding human brain quinolinate phosphoribosyltransferase. Biochimica et biophysica acta 1998 Jan 21;1395(2):192-201
  25. Fukuoka S, Ishiguro K, Tanabe A, Egashira Y, Sanada H, Fukuwatari T, Shibata K
    Identification and expression of alpha cDNA encoding human 2-amino-3-carboxymuconate-6-semialdehyde decarboxylase (ACMSD): a key enzyme for the tryptophan-niacine pathway and quinolinate hypothesis. Advances in experimental medicine and biology 2003;527:443-53
  26. Nakamura S, Kameyama M
    The role of membrane-bound 5'-nucleotidase in the transport and utilization of nicotinic acid ribonucleotide. Biochemical medicine 1980 Dec;24(3):348-55
  27. Bieganowski P, Brenner C
    Discoveries of nicotinamide riboside as a nutrient and conserved NRK genes establish a Preiss-Handler independent route to NAD+ in fungi and humans. Cell 2004 May 14;117(4):495-502
  28. Zhou T, Kurnasov O, Tomchick DR, Binns DD, Grishin NV, Marquez VE, Osterman AL, Zhang H
    Structure of human nicotinamide/nicotinic acid mononucleotide adenylyltransferase. Basis for the dual substrate specificity and activation of the oncolytic agent tiazofurin. The Journal of biological chemistry 2002 Apr 12;277(15):13148-54
  29. Yalowitz JA, Xiao S, Biju MP, Antony AC, Cummings OW, Deeg MA, Jayaram HN
    Characterization of human brain nicotinamide 5'-mononucleotide adenylyltransferase-2 and expression in human pancreas. The Biochemical journal 2004 Jan 15;377(Pt 2):317-26
  30. Emanuelli M, Carnevali F, Saccucci F, Pierella F, Amici A, Raffaelli N, Magni G
    Molecular cloning, chromosomal localization, tissue mRNA levels, bacterial expression, and enzymatic properties of human NMN adenylyltransferase. The Journal of biological chemistry 2001 Jan 5;276(1):406-12
  31. Schweiger M, Hennig K, Lerner F, Niere M, Hirsch-Kauffmann M, Specht T, Weise C, Oei SL, Ziegler M
    Characterization of recombinant human nicotinamide mononucleotide adenylyl transferase (NMNAT), a nuclear enzyme essential for NAD synthesis. FEBS letters 2001 Mar 9;492(1-2):95-100
  32. Garavaglia S, D'Angelo I, Emanuelli M, Carnevali F, Pierella F, Magni G, Rizzi M
    Structure of human NMN adenylyltransferase. A key nuclear enzyme for NAD homeostasis. The Journal of biological chemistry 2002 Mar 8;277(10):8524-30
  33. Werner E, Ziegler M, Lerner F, Schweiger M, Heinemann U
    Crystal structure of human nicotinamide mononucleotide adenylyltransferase in complex with NMN. FEBS letters 2002 Apr 10;516(1-3):239-44
  34. Ealick SE, Rule SA, Carter DC, Greenhough TJ, Babu YS, Cook WJ, Habash J, Helliwell JR, Stoeckler JD, Parks RE Jr
    Three-dimensional structure of human erythrocytic purine nucleoside phosphorylase at 3.2 A resolution. The Journal of biological chemistry 1990 Jan 25;265(3):1812-20
  35. Pannicke U, Tuchschmid P, Friedrich W, Bartram CR, Schwarz K
    Two novel missense and frameshift mutations in exons 5 and 6 of the purine nucleoside phosphorylase (PNP) gene in a severe combined immunodeficiency (SCID) patient. Human genetics 1996 Dec;98(6):706-9
  36. Imai T, Anderson BM
    Nicotinamide riboside phosphorylase from beef liver: purification and characterization. Archives of biochemistry and biophysics 1987 Apr;254(1):253-62
  37. Imai T, Anderson BM
    Metabolism of nicotinamide mononucleotide in beef liver. Archives of biochemistry and biophysics 1987 Apr;254(1):241-52
  38. Wielgus-Kutrowska B, Kulikowska E, Wierzchowski J, Bzowska A, Shugar D
    Nicotinamide riboside, an unusual, non-typical, substrate of purified purine-nucleoside phosphorylases. European journal of biochemistry / FEBS 1997 Jan 15;243(1-2):408-14
  39. Hussain AM, Lee HC, Chang CF
    Functional expression of secreted mouse BST-1 in yeast. Protein expression and purification 1998 Feb;12(1):133-7
  40. Yamamoto-Katayama S, Ariyoshi M, Ishihara K, Hirano T, Jingami H, Morikawa K
    Crystallographic studies on human BST-1/CD157 with ADP-ribosyl cyclase and NAD glycohydrolase activities. Journal of molecular biology 2002 Feb 22;316(3):711-23
  41. Aarhus R, Graeff RM, Dickey DM, Walseth TF, Lee HC
    ADP-ribosyl cyclase and CD38 catalyze the synthesis of a calcium-mobilizing metabolite from NADP. The Journal of biological chemistry 1995 Dec 22;270(51):30327-33
  42. Lee HC, Graeff RM, Walseth TF
    ADP-ribosyl cyclase and CD38. Multi-functional enzymes in Ca+2 signaling. Advances in experimental medicine and biology 1997;419:411-9
  43. Berthelier V, Tixier JM, Muller-Steffner H, Schuber F, Deterre P
    Human CD38 is an authentic NAD(P)+ glycohydrolase. The Biochemical journal 1998 Mar 15;330 ( Pt 3):1383-90
  44. Liu Q, Kriksunov IA, Graeff R, Munshi C, Lee HC, Hao Q
    Structural Basis for the Mechanistic Understanding of Human CD38-controlled Multiple Catalysis. The Journal of biological chemistry 2006 Oct 27;281(43):32861-9
  45. Takasawa S, Tohgo A, Noguchi N, Koguma T, Nata K, Sugimoto T, Yonekura H, Okamoto H
    Synthesis and hydrolysis of cyclic ADP-ribose by human leukocyte antigen CD38 and inhibition of the hydrolysis by ATP. The Journal of biological chemistry 1993 Dec 15;268(35):26052-4
  46. De Flora A, Franco L, Guida L, Bruzzone S, Zocchi E
    Ectocellular CD38-catalyzed synthesis and intracellular Ca(2+)-mobilizing activity of cyclic ADP-ribose. Cell biochemistry and biophysics 1998;28(1):45-62
  47. Franco L, Guida L, Bruzzone S, Zocchi E, Usai C, De Flora A
    The transmembrane glycoprotein CD38 is a catalytically active transporter responsible for generation and influx of the second messenger cyclic ADP-ribose across membranes. The FASEB journal : official publication of the Federation of American Societies for Experimental Biology 1998 Nov;12(14):1507-20
  48. Graeff R, Munshi C, Aarhus R, Johns M, Lee HC
    A single residue at the active site of CD38 determines its NAD cyclizing and hydrolyzing activities. The Journal of biological chemistry 2001 Apr 13;276(15):12169-73
  49. Liu Q, Kriksunov IA, Graeff R, Lee HC, Hao Q
    Structural basis for formation and hydrolysis of the calcium messenger cyclic adp-ribose by human CD38. The Journal of biological chemistry 2007 Feb 23;282(8):5853-61
  50. Zerez CR, Wong MD, Tanaka KR
    Partial purification and properties of nicotinamide adenine dinucleotide synthetase from human erythrocytes: evidence that enzyme activity is a sensitive indicator of lead exposure. Blood 1990 Apr 1;75(7):1576-82
  51. Morita Y, Sakai T, Araki S, Araki T, Masuyama Y
    Nicotinamide adenine dinucleotide synthetase activity in erythrocytes as a tool for the biological monitoring of lead exposure. International archives of occupational and environmental health 1997;70(3):195-8
  52. Hara N, Yamada K, Terashima M, Osago H, Shimoyama M, Tsuchiya M
    Molecular identification of human glutamine- and ammonia-dependent NAD synthetases. Carbon-nitrogen hydrolase domain confers glutamine dependency. The Journal of biological chemistry 2003 Mar 28;278(13):10914-21
  53. Henthorn PS, Raducha M, Kadesch T, Weiss MJ, Harris H
    Sequence and characterization of the human intestinal alkaline phosphatase gene. The Journal of biological chemistry 1988 Aug 25;263(24):12011-9
  54. Henthorn PS, Raducha M, Edwards YH, Weiss MJ, Slaughter C, Lafferty MA, Harris H
    Nucleotide and amino acid sequences of human intestinal alkaline phosphatase: close homology to placental alkaline phosphatase. Proceedings of the National Academy of Sciences of the United States of America 1987 Mar;84(5):1234-8
  55. Le Du MH, Stigbrand T, Taussig MJ, Menez A, Stura EA
    Crystal structure of alkaline phosphatase from human placenta at 1.8 A resolution. Implication for a substrate specificity. The Journal of biological chemistry 2001 Mar 23;276(12):9158-65
  56. Hua JC, Berger J, Pan YC, Hulmes JD, Udenfriend S
    Partial sequencing of human adult, human fetal, and bovine intestinal alkaline phosphatases: comparison with the human placental and liver isozymes. Proceedings of the National Academy of Sciences of the United States of America 1986 Apr;83(8):2368-72
  57. Brun-Heath I, Taillandier A, Serre JL, Mornet E
    Characterization of 11 novel mutations in the tissue non-specific alkaline phosphatase gene responsible for hypophosphatasia and genotype-phenotype correlations. Molecular genetics and metabolism 2005 Mar;84(3):273-7
  58. Iwaki M, Murakami E, Kakehi K
    Chromatographic and capillary electrophoretic methods for the analysis of nicotinic acid and its metabolites. Journal of chromatography. B, Biomedical sciences and applications. 2000 Sep 29;747(1-2):229-40
  59. Aksoy S, Szumlanski CL, Weinshilboum RM
    Human liver nicotinamide N-methyltransferase. cDNA cloning, expression, and biochemical characterization. The Journal of biological chemistry 1994 May 20;269(20):14835-40
  60. Aksoy S, Brandriff BF, Ward A, Little PF, Weinshilboum RM
    Human nicotinamide N-methyltransferase gene: molecular cloning, structural characterization and chromosomal localization. Genomics 1995 Oct 10;29(3):555-61
  61. Johns DG
    Human liver aldehyde oxidase: differential inhibition of oxidation of charged and uncharged substrates. The Journal of clinical investigation 1967 Sep;46(9):1492-505
  62. Stanulovic M, Chaykin S
    Metabolic origins of the pyridones of N 1 -methylnicotinamide in man and rat. Archives of biochemistry and biophysics 1971 Jul;145(1):35-42
  63. Matsubara K, Aoyama K, Suno M, Awaya T
    N-methylation underlying Parkinson's disease. Neurotoxicology and teratology. 2002 Sep-Oct;24(5):593-8
  64. Aoyama K, Matsubara K, Okada K, Fukushima S, Shimizu K, Yamaguchi S, Uezono T, Satomi M, Hayase N, Ohta S, Shiono H, Kobayashi S
    N-methylation ability for azaheterocyclic amines is higher in Parkinson's disease: nicotinamide loading test. Journal of neural transmission (Vienna, Austria : 1996) 2000;107(8-9):985-95
  65. Sugihara K, Tayama Y, Shimomiya K, Yoshimoto D, Ohta S, Kitamura S
    Estimation of aldehyde oxidase activity in vivo from conversion ratio of N1-methylnicotinamide to pyridones, and intraspecies variation of the enzyme activity in rats. Drug metabolism and disposition: the biological fate of chemicals 2006 Feb;34(2):208-12
  66. Vaziri H, Dessain SK, Ng Eaton E, Imai SI, Frye RA, Pandita TK, Guarente L, Weinberg RA
    hSIR2(SIRT1) functions as an NAD-dependent p53 deacetylase. Cell 2001 Oct 19;107(2):149-59
  67. van der Horst A, Tertoolen LG, de Vries-Smits LM, Frye RA, Medema RH, Burgering BM
    FOXO4 is acetylated upon peroxide stress and deacetylated by the longevity protein hSir2(SIRT1). The Journal of biological chemistry 2004 Jul 9;279(28):28873-9
  68. Sauve AA, Wolberger C, Schramm VL, Boeke JD
    The Biochemistry of Sirtuins. Annual review of biochemistry 2006 Mar 3;
  69. Finnin MS, Donigian JR, Pavletich NP
    Structure of the histone deacetylase SIRT2. Nature structural biology 2001 Jul;8(7):621-5
  70. Borra MT, O'Neill FJ, Jackson MD, Marshall B, Verdin E, Foltz KR, Denu JM
    Conserved enzymatic production and biological effect of O-acetyl-ADP-ribose by silent information regulator 2-like NAD+-dependent deacetylases. The Journal of biological chemistry 2002 Apr 12;277(15):12632-41
  71. North BJ, Marshall BL, Borra MT, Denu JM, Verdin E
    The human Sir2 ortholog, SIRT2, is an NAD+-dependent tubulin deacetylase. Molecular cell 2003 Feb;11(2):437-44
  72. Schwer B, North BJ, Frye RA, Ott M, Verdin E
    The human silent information regulator (Sir)2 homologue hSIRT3 is a mitochondrial nicotinamide adenine dinucleotide-dependent deacetylase. The Journal of cell biology 2002 Aug 19;158(4):647-57
  73. Onyango P, Celic I, McCaffery JM, Boeke JD, Feinberg AP
    SIRT3, a human SIR2 homologue, is an NAD-dependent deacetylase localized to mitochondria. Proceedings of the National Academy of Sciences of the United States of America 2002 Oct 15;99(21):13653-8
  74. Frye RA
    Characterization of five human cDNAs with homology to the yeast SIR2 gene: Sir2-like proteins (sirtuins) metabolize NAD and may have protein ADP-ribosyltransferase activity. Biochemical and biophysical research communications 1999 Jun 24;260(1):273-9
  75. Vaquero A, Sternglanz R, Reinberg D
    NAD+-dependent deacetylation of H4 lysine 16 by class III HDACs. Oncogene 2007 Aug 13;26(37):5505-20
  76. Frye RA
    Phylogenetic classification of prokaryotic and eukaryotic Sir2-like proteins. Biochemical and biophysical research communications 2000 Jul 5;273(2):793-8
  77. Frye R
    "SIRT8" expressed in thyroid cancer is actually SIRT7. British journal of cancer 2002 Dec 2;87(12):1479
  78. Saunders LR, Verdin E
    Sirtuins: critical regulators at the crossroads between cancer and aging. Oncogene 2007 Aug 13;26(37):5489-504
  79. Okazaki IJ, Zolkiewska A, Nightingale MS, Moss J
    Immunological and structural conservation of mammalian skeletal muscle glycosylphosphatidylinositol-linked ADP-ribosyltransferases. Biochemistry 1994 Nov 1;33(43):12828-36
  80. Levy I, Wu YQ, Roeckel N, Bulle F, Pawlak A, Siegrist S, Mattei MG, Guellaen G
    Human testis specifically expresses a homologue of the rodent T lymphocytes RT6 mRNA. FEBS letters 1996 Mar 18;382(3):276-80
  81. Koch-Nolte F, Haag F, Braren R, Kuhl M, Hoovers J, Balasubramanian S, Bazan F, Thiele HG
    Two novel human members of an emerging mammalian gene family related to mono-ADP-ribosylating bacterial toxins. Genomics 1997 Feb 1;39(3):370-6
  82. Gubin AN, Njoroge JM, Wojda U, Pack SD, Rios M, Reid ME, Miller JL
    Identification of the dombrock blood group glycoprotein as a polymorphic member of the ADP-ribosyltransferase gene family. Blood 2000 Oct 1;96(7):2621-7
  83. Okazaki IJ, Zolkiewska A, Takada T, Moss J
    Characterization of mammalian ADP-ribosylation cycles. Biochimie 1995;77(5):319-25
  84. Donnelly LE, Rendell NB, Murray S, Allport JR, Lo G, Kefalas P, Taylor GW, MacDermot J
    Arginine-specific mono(ADP-ribosyl)transferase activity on the surface of human polymorphonuclear neutrophil leucocytes. The Biochemical journal 1996 Apr 15;315 ( Pt 2):635-41
  85. Okazaki IJ, Kim HJ, Moss J
    Cloning and characterization of a novel membrane-associated lymphocyte NAD:arginine ADP-ribosyltransferase. The Journal of biological chemistry 1996 Sep 6;271(36):22052-7
  86. Moss J, Balducci E, Cavanaugh E, Kim HJ, Konczalik P, Lesma EA, Okazaki IJ, Park M, Shoemaker M, Stevens LA, Zolkiewska A
    Characterization of NAD:arginine ADP-ribosyltransferases. Molecular and cellular biochemistry 1999 Mar;193(1-2):109-13
  87. Hassa PO, Haenni SS, Elser M, Hottiger MO
    Nuclear ADP-ribosylation reactions in mammalian cells: where are we today and where are we going? Microbiology and molecular biology reviews : MMBR 2006 Sep;70(3):789-829
  88. Ying W, Sevigny MB, Chen Y, Swanson RA
    Poly(ADP-ribose) glycohydrolase mediates oxidative and excitotoxic neuronal death. Proceedings of the National Academy of Sciences of the United States of America 2001 Oct 9;98(21):12227-32
  89. Meyer RG, Meyer-Ficca ML, Jacobson EL, Jacobson MK
    Human poly(ADP-ribose) glycohydrolase (PARG) gene and the common promoter sequence it shares with inner mitochondrial membrane translocase 23 (TIM23). Gene 2003 Sep 18;314:181-90
  90. Johansson M
    A human poly(ADP-ribose) polymerase gene family (ADPRTL): cDNA cloning of two novel poly(ADP-ribose) polymerase homologues. Genomics 1999 May 1;57(3):442-5
  91. Ame JC, Rolli V, Schreiber V, Niedergang C, Apiou F, Decker P, Muller S, Hoger T, Menissier-de Murcia J, de Murcia G
    PARP-2, A novel mammalian DNA damage-dependent poly(ADP-ribose) polymerase. The Journal of biological chemistry 1999 Jun 18;274(25):17860-8
  92. Schreiber V, Ame JC, Dolle P, Schultz I, Rinaldi B, Fraulob V, Menissier-de Murcia J, de Murcia G
    Poly(ADP-ribose) polymerase-2 (PARP-2) is required for efficient base excision DNA repair in association with PARP-1 and XRCC1. The Journal of biological chemistry 2002 Jun 21;277(25):23028-36
  93. Kickhoefer VA, Siva AC, Kedersha NL, Inman EM, Ruland C, Streuli M, Rome LH
    The 193-kD vault protein, VPARP, is a novel poly(ADP-ribose) polymerase. The Journal of cell biology 1999 Sep 6;146(5):917-28
  94. Still IH, Vince P, Cowell JK
    Identification of a novel gene (ADPRTL1) encoding a potential Poly(ADP-ribosyl)transferase protein. Genomics 1999 Dec 15;62(3):533-6
  95. Smith S, Giriat I, Schmitt A, de Lange T
    Tankyrase, a poly(ADP-ribose) polymerase at human telomeres. Science 1998 Nov 20;282(5393):1484-7
  96. Smith S, de Lange T
    Cell cycle dependent localization of the telomeric PARP, tankyrase, to nuclear pore complexes and centrosomes. Journal of cell science 1999 Nov;112 ( Pt 21):3649-56
  97. Cook BD, Dynek JN, Chang W, Shostak G, Smith S
    Role for the related poly(ADP-Ribose) polymerases tankyrase 1 and 2 at human telomeres. Molecular and cellular biology 2002 Jan;22(1):332-42
  98. Kaminker PG, Kim SH, Taylor RD, Zebarjadian Y, Funk WD, Morin GB, Yaswen P, Campisi J
    TANK2, a new TRF1-associated poly(ADP-ribose) polymerase, causes rapid induction of cell death upon overexpression. The Journal of biological chemistry 2001 Sep 21;276(38):35891-9
  99. Funakoshi I, Kato H, Horie K, Yano T, Hori Y, Kobayashi H, Inoue T, Suzuki H, Fukui S, Tsukahara M
    Molecular cloning of cDNAs for human fibroblast nucleotide pyrophosphatase. Archives of biochemistry and biophysics 1992 May 15;295(1):180-7
  100. Belli SI, Goding JW
    Biochemical characterization of human PC-1, an enzyme possessing alkaline phosphodiesterase I and nucleotide pyrophosphatase activities. European journal of biochemistry / FEBS 1994 Dec 1;226(2):433-43
  101. Belli SI, Mercuri FA, Sali A, Goding JW
    Autophosphorylation of PC-1 (alkaline phosphodiesterase I/nucleotide pyrophosphatase) and analysis of the active site. European journal of biochemistry / FEBS 1995 Mar 15;228(3):669-76
  102. Rutsch F, Ruf N, Vaingankar S, Toliat MR, Suk A, Hohne W, Schauer G, Lehmann M, Roscioli T, Schnabel D, Epplen JT, Knisely A, Superti-Furga A, McGill J, Filippone M, Sinaiko AR, Vallance H, Hinrichs B, Smith W, Ferre M, Terkeltaub R, Nurnberg P
    Mutations in ENPP1 are associated with 'idiopathic' infantile arterial calcification. Nature genetics 2003 Aug;34(4):379-81
  103. Murata J, Lee HY, Clair T, Krutzsch HC, Arestad AA, Sobel ME, Liotta LA, Stracke ML
    cDNA cloning of the human tumor motility-stimulating protein, autotaxin, reveals a homology with phosphodiesterases. The Journal of biological chemistry 1994 Dec 2;269(48):30479-84
  104. Lee HY, Murata J, Clair T, Polymeropoulos MH, Torres R, Manrow RE, Liotta LA, Stracke ML
    Cloning, chromosomal localization, and tissue expression of autotaxin from human teratocarcinoma cells. Biochemical and biophysical research communications 1996 Jan 26;218(3):714-9
  105. Kawagoe H, Soma O, Goji J, Nishimura N, Narita M, Inazawa J, Nakamura H, Sano K
    Molecular cloning and chromosomal assignment of the human brain-type phosphodiesterase I/nucleotide pyrophosphatase gene (PDNP2). Genomics 1995 Nov 20;30(2):380-4
  106. Jin-Hua P, Goding JW, Nakamura H, Sano K
    Molecular cloning and chromosomal localization of PD-Ibeta (PDNP3), a new member of the human phosphodiesterase I genes. Genomics 1997 Oct 15;45(2):412-5
  107. Abdelraheim SR, Spiller DG, McLennan AG
    Mammalian NADH diphosphatases of the Nudix family: cloning and characterization of the human peroxisomal NUDT12 protein. The Biochemical journal 2003 Sep 1;374(Pt 2):329-35
  108. Lerner F, Niere M, Ludwig A, Ziegler M
    Structural and functional characterization of human NAD kinase. Biochemical and biophysical research communications 2001 Oct 19;288(1):69-74
  109. White SA, Peake SJ, McSweeney S, Leonard G, Cotton NP, Jackson JB
    The high-resolution structure of the NADP(H)-binding component (dIII) of proton-translocating transhydrogenase from human heart mitochondria. Structure with Folding & design. 2000 Jan 15;8(1):1-12
  110. Lin MT, Beal MF
    Mitochondrial dysfunction and oxidative stress in neurodegenerative diseases. Nature 2006 Oct 19;443(7113):787-95
  111. Leroux A, Torlinski L, Kaplan JC
    Soluble and microsomal forms of NADH-cytochrome beta 5 reductase from human placenta. Similarity with NADH-methemoglobin reductase from human erythrocytes. Biochimica et biophysica acta 1977 Mar 15;481(1):50-62
  112. Yubisui T, Takeshita M
    Characterization of the purified NADH-cytochrome b5 reductase of human erythrocytes as a FAD-containing enzyme. The Journal of biological chemistry 1980 Mar 25;255(6):2454-6
  113. Kitajima S, Minakami S
    Human NADH-cytochrome b5 reductases: comparison among those of erythrocyte membrane, erythrocyte cytosol, and liver microsomes. Journal of biochemistry 1983 Feb;93(2):615-20
  114. Tauber AI, Wright J, Higson FK, Edelman SA, Waxman DJ
    Purification and characterization of the human neutrophil NADH-cytochrome b5 reductase. Blood 1985 Sep;66(3):673-8